多传感器融合被广泛用于自动驾驶汽车的环境感知系统。它解决了由环境变化引起的干扰,并使整个驾驶系统更安全,更可靠。在本文中,提出了一种基于纹理信息的新型可见和近红外融合方法,以增强非结构化的环境图像。它针对传统可见和近红外图像融合方法中的工件,信息丢失和噪声问题。首先,通过相对总变化(RTV)计算,可见图像(RGB)的结构信息(RGB)和近红外图像(NIR)作为融合图像的基础层;其次,建立了贝叶斯分类模型来计算噪声重量和可见图像中的噪声信息和噪声信息通过关节双侧滤波器自适应过滤;最后,融合图像是通过颜色空间转换获得的。实验结果表明,所提出的算法可以保留光谱特性和无伪影和颜色失真的可见和近红外图像的独特信息,并且具有良好的鲁棒性以及保留独特的质地。
translated by 谷歌翻译
Recently, improving the robustness of policies across different environments attracts increasing attention in the reinforcement learning (RL) community. Existing robust RL methods mostly aim to achieve the max-min robustness by optimizing the policy's performance in the worst-case environment. However, in practice, a user that uses an RL policy may have different preferences over its performance across environments. Clearly, the aforementioned max-min robustness is oftentimes too conservative to satisfy user preference. Therefore, in this paper, we integrate user preference into policy learning in robust RL, and propose a novel User-Oriented Robust RL (UOR-RL) framework. Specifically, we define a new User-Oriented Robustness (UOR) metric for RL, which allocates different weights to the environments according to user preference and generalizes the max-min robustness metric. To optimize the UOR metric, we develop two different UOR-RL training algorithms for the scenarios with or without a priori known environment distribution, respectively. Theoretically, we prove that our UOR-RL training algorithms converge to near-optimal policies even with inaccurate or completely no knowledge about the environment distribution. Furthermore, we carry out extensive experimental evaluations in 4 MuJoCo tasks. The experimental results demonstrate that UOR-RL is comparable to the state-of-the-art baselines under the average and worst-case performance metrics, and more importantly establishes new state-of-the-art performance under the UOR metric.
translated by 谷歌翻译
Acquiring a better understanding of drought impacts becomes increasingly vital under a warming climate. Traditional drought indices describe mainly biophysical variables and not impacts on social, economic, and environmental systems. We utilized natural language processing and bidirectional encoder representation from Transformers (BERT) based transfer learning to fine-tune the model on the data from the news-based Drought Impact Report (DIR) and then apply it to recognize seven types of drought impacts based on the filtered Twitter data from the United States. Our model achieved a satisfying macro-F1 score of 0.89 on the DIR test set. The model was then applied to California tweets and validated with keyword-based labels. The macro-F1 score was 0.58. However, due to the limitation of keywords, we also spot-checked tweets with controversial labels. 83.5% of BERT labels were correct compared to the keyword labels. Overall, the fine-tuned BERT-based recognizer provided proper predictions and valuable information on drought impacts. The interpretation and analysis of the model were consistent with experiential domain expertise.
translated by 谷歌翻译
Under climate change, the increasing frequency, intensity, and spatial extent of drought events lead to higher socio-economic costs. However, the relationships between the hydro-meteorological indicators and drought impacts are not identified well yet because of the complexity and data scarcity. In this paper, we proposed a framework based on the extreme gradient model (XGBoost) for Texas to predict multi-category drought impacts and connected a typical drought indicator, Standardized Precipitation Index (SPI), to the text-based impacts from the Drought Impact Reporter (DIR). The preliminary results of this study showed an outstanding performance of the well-trained models to assess drought impacts on agriculture, fire, society & public health, plants & wildlife, as well as relief, response & restrictions in Texas. It also provided a possibility to appraise drought impacts using hydro-meteorological indicators with the proposed framework in the United States, which could help drought risk management by giving additional information and improving the updating frequency of drought impacts. Our interpretation results using the Shapley additive explanation (SHAP) interpretability technique revealed that the rules guiding the predictions of XGBoost comply with domain expertise knowledge around the role that SPI indicators play around drought impacts.
translated by 谷歌翻译
本文旨在通过介绍第一个中国数学预训练的语言模型〜(PLM)来提高机器的数学智能,以有效理解和表示数学问题。与其他标准NLP任务不同,数学文本很难理解,因为它们在问题陈述中涉及数学术语,符号和公式。通常,它需要复杂的数学逻辑和背景知识来解决数学问题。考虑到数学文本的复杂性质,我们设计了一种新的课程预培训方法,用于改善由基本和高级课程组成的数学PLM的学习。特别是,我们首先根据位置偏见的掩盖策略执行令牌级预训练,然后设计基于逻辑的预训练任务,旨在分别恢复改组的句子和公式。最后,我们介绍了一项更加困难的预训练任务,该任务强制执行PLM以检测和纠正其生成的解决方案中的错误。我们对离线评估(包括九个与数学相关的任务)和在线$ A/B $测试进行了广泛的实验。实验结果证明了与许多竞争基线相比,我们的方法的有效性。我们的代码可在:\ textColor {blue} {\ url {https://github.com/rucaibox/jiuzhang}}}中获得。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译